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1 Introduction 
 
You can find the Atkinson Science Conical Shock web application at the web address 
https://atkinsonscience.co.uk/WebApps/Aerospace/ConicalShock.aspx. You can also find a user guide 
at https://atkinsonscience.co.uk/PDFs/WebApps/Conical%20Shock%20User%20Guide.pdf. 
 
A conical shock is formed when air at supersonic speed approaches a cone parallel to the axis of the 
cone, as shown in Figure 1. We shall assume that the cone extends to infinity in the downstream 
direction (the cone is semi-infinite). A conical shock is formed at the vertex of the cone. The change in 
properties across the shock can be assumed to be the same as for an oblique shock formed at the vertex 
of a sharp wedge. However, the wave angle 𝛽𝛽 of the conical shock will be less than that of the oblique 
shock, assuming the semi-vertex angle 𝜆𝜆 of the cone and the deflection angle 𝛼𝛼 of the wedge are the 
same. 
 
We can define a spherical coordinate system (𝑟𝑟, 𝜃𝜃, 𝜙𝜙) with origin at the vertex of the cone, as shown in 
Figure 1. The flow is axisymmetric, so there are no variations in flow properties in the 𝜙𝜙 direction. We 
can define velocity components 𝑣𝑣𝑟𝑟 and 𝑣𝑣𝜃𝜃 along the 𝑟𝑟 and 𝜃𝜃 directions, respectively. Since the flow is 
not swirling, the component of velocity 𝑣𝑣𝜙𝜙 in the 𝜙𝜙 direction is zero. 
 
 
Figure 1  Cone and spherical coordinate system 
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The flow behind a conical shock differs from that behind an oblique shock. After traversing the conical 
shock, the flow streamlines curve until they become parallel with the surface of the cone at infinity. In 
contrast, the streamlines behind an oblique shock become parallel to the surface of the wedge 
immediately. Since the cone extends to infinity the idea that flow properties may vary along the surface 
of the cone is not meaningful. In fact, experiments show that the flow properties are constant along the 
surface of the cone and along rays originating from the vertex. Variations in flow properties are only 
significant in the 𝜃𝜃 direction. 
 
A method of solving the flow behind a conical shock has been published by Taylor and Maccoll, 
Ref. [1]. They assume that the flow behind the shock is irrotational. This assumption leads to the 
following simple relation between the velocity components 𝑣𝑣𝑟𝑟 and 𝑣𝑣𝜃𝜃 behind the shock: 
 

𝑣𝑣𝜃𝜃 =
𝑑𝑑𝑣𝑣𝑟𝑟

𝑑𝑑𝑑𝑑
      (1.1) 

 
If h2 and 𝑣𝑣2 are the downstream static enthalpy and speed given by the oblique shock relations, then we 
can define a reference velocity 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 as follows: 
 

ℎ02 = ℎ2 +
𝑣𝑣2

2

2
=

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
2

2
      (1.2) 

 
Note that 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 is the same everywhere behind the shock. Taylor and Maccoll derive the following 
relation for the radial velocity component 𝑣𝑣𝑟𝑟 in terms of the angle 𝜃𝜃: 
 

𝛾𝛾 − 1
2

�𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
2 − 𝑣𝑣𝑟𝑟

2 − �
𝑑𝑑𝑣𝑣𝑟𝑟

𝑑𝑑𝑑𝑑
�

2

� �2𝑣𝑣𝑟𝑟 +
𝑑𝑑𝑣𝑣𝑟𝑟

𝑑𝑑𝑑𝑑
cot 𝜃𝜃 +

𝑑𝑑2𝑣𝑣𝑟𝑟

𝑑𝑑𝜃𝜃2 � −
𝑑𝑑𝑣𝑣𝑟𝑟

𝑑𝑑𝑑𝑑
�𝑣𝑣𝑟𝑟

𝑑𝑑𝑣𝑣𝑟𝑟

𝑑𝑑𝑑𝑑
+

𝑑𝑑𝑣𝑣𝑟𝑟

𝑑𝑑𝑑𝑑
𝑑𝑑2𝑣𝑣𝑟𝑟

𝑑𝑑𝜃𝜃2 � = 0      (1.3) 

 
This is the Taylor-Maccoll equation for the solution of conical shock flows. The derivation of the 
equation can also be found in text books on compressible fluid flow, such as Ref. [2]. 
 
There is no analytical solution satisfying equations (1.1) to (1.3). We must solve them numerically and 
the approach taken will be described in Sections 3 and 4 of this guide. 
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2 Shock characteristics 
 
The conical shock formed around a cone has the characteristics of an oblique shock. Usually, it is a 
weak oblique shock that is formed, rather than a strong oblique shock. However, if the pressure at the 
base of the cone can be increased, then it is possible to create a conical shock with the characteristics 
of a strong oblique shock (just as when the pressure at the base of a wedge is increased). Both types of 
shock are attached to the vertex of the cone, but the changes in flow properties across the strong shock 
are more severe. The web application computes only the weak shock solution. 
 
Figure 2 applies to the weak shock solution and shows how the wave angle 𝛽𝛽 varies with the semi-
vertex angle 𝜆𝜆 and the upstream Mach number 𝑀𝑀1. The ratio of the specific heats 𝛾𝛾 is assumed to be 1.4. 
For each Mach number 𝑀𝑀1 there is a highest possible semi-vertex angle 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 and a highest possible 
wave angle 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚. Figure 3 shows 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 against the 𝑀𝑀1, and Figure 4 shows the 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 against 𝑀𝑀1. 
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Figure 2  Wave angle against semi-vertex angle for different Mach number values 
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Figure 3  Highest semi-vertex angle for a given upstream Mach number 

 
 
 
Figure 4  Highest wave angle for a given upstream Mach number 

 
 
  

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H
ig

he
st

 v
al

ue
 o

f s
em

i-v
er

te
x 

an
gl

e,
 λ

m
ax

[d
eg

]

Log to base 10 of Mach number, Log10(M1)

Data points (knots)

Natural cubic splines

Straight-line fit

65

70

75

80

85

90

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H
ig

he
st

 v
al

ue
 o

f w
av

e 
an

gl
e,

 𝛽𝛽
m

ax
[d

eg
]

Log to base 10 of Mach number, Log10(M1) 

Data points (knots)

Natural cubic splines

Straight-line fit



ATKINSON SCIENCE LIMITED  THEORY GUIDE 

10 
 

If the semi-vertex angle exceeds the 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 value for the upstream Mach number, then the shock becomes 
detached, as shown in Figure 5. The web application does not deal with the solution of the detached 
shock. The highest semi-vertex angle 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 at which a conical shock can be formed increases with 𝑀𝑀1, 
as can be seen from Figure 3. The web application can determine whether the user’s input would 
produce a detached shock. If this is the case, then the application issues a warning message and advises 
the user to either reduce the semi-vertex angle or increase the upstream Mach number. 
 
 
Figure 5  Conical and detached shocks 

 
 
The wave angle 𝛽𝛽 of a conical shock for a cone with semi-vertex angle 𝜆𝜆 is generally smaller than the 
wave angle of an oblique shock with a wedge deflection angle 𝛼𝛼 equal to 𝜆𝜆. However, as 𝛼𝛼 and 𝜆𝜆 
approach zero, the wave angles of the two types of shock become the same. 
 
Figure 6 shows an oblique shock and a conical shock for an upstream Mach number 𝑀𝑀1 of 2. The angles 
𝛼𝛼 and 𝜆𝜆 are the same at 10°. The wave angle for the oblique shock is 39.31°, while the wave angle for 
the conical shock is 31.25°. The wave angle of the conical shock only becomes equal to that of the 
oblique shock when 𝜆𝜆 is increased to 21.38°. 
 
 
Figure 6  Difference in wave angle between oblique shock and conical shock 
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3 Solution of the flow 
 

3.1 Calculation method 
 
In order to describe the calculation method, we must distinguish between three regions of the flow, as 
shown in Figure 7. Region 1 is the uniform flow upstream of the shock. We shall base the properties of 
this flow on the International Standard Atmosphere (ISA), Ref. [3]. For the ISA, the ratio of specific 
heats 𝛾𝛾 is equal to 1.4. Region 2 is the flow immediately behind the shock. If we know the wave angle 
𝛽𝛽 then we can calculate the properties behind the shock from oblique shock relations. Region 3 is the 
surface of the cone. Between 2 and 3 we can assume that the flow is isentropic and calculate the flow 
from equations (1.1) to (1.3). To describe the calculation method, we shall use the subscripts 1, 2 and 3 
to indicate the locations of flow properties. 
 
At the start of the calculation we do not know the wave angle 𝛽𝛽. We must specify an initial value of 𝛽𝛽 
so that we can determine the properties immediately behind the shock. We then divide the space 
between 2 and 3 into uniform angular intervals 𝛿𝛿𝛿𝛿. Using the conditions behind the shock as boundary 
values, we solve equations (1.1) to (1.3) numerically in steps of 𝛿𝛿𝛿𝛿, marching away from the shock 
towards the cone. If our initial value of 𝛽𝛽 is correct, then we will find that the calculated angular velocity 
component 𝑣𝑣𝜃𝜃 is zero at the cone. If not, then we must repeat the calculation for a different shock angle 
𝛽𝛽, until the condition that 𝑣𝑣𝜃𝜃 is zero at the cone is satisfied. 
 
 
Figure 7  Flow regions 
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3.2 Starting the calculation 
 
Figure 2 shows that for a weak shock solution there is a highest possible semi-vertex angle 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 and a 
highest possible wave angle 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 for the upstream Mach number 𝑀𝑀1. The variation of 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 with 𝑀𝑀1 is 
plotted in Figure 3 and the variation of 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 with 𝑀𝑀1 is plotted in Figure 4. These plots were obtained 
by increasing the semi-vertex angle 𝜆𝜆 entered into the web application for a given 𝑀𝑀1 until it was no 
longer possible to obtain a weak shock solution. The increments in 𝜆𝜆 were 0.001°. In Table 3, the 
computed values of 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 and 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 are given against 𝑀𝑀1 and Log10𝑀𝑀1. 
 
 
Table 1  λmax and βmax against M1 

M1 Log10M1 λmax [deg] βmax [deg] 
1 0 0 90 

1.01 0.004321 4.448 84.641 
1.02 0.008600 6.234 82.585 
1.03 0.012837 7.598 81.049 
1.05 0.021189 9.759 78.743 
1.1 0.041393 13.749 75.290 

1.15 0.060698 16.846 73.113 
1.2 0.079181 19.475 71.782 

1.25 0.096910 21.792 70.777 
1.3 0.11394 23.874 70.123 

1.35 0.13033 25.767 69.636 
1.4 0.14613 27.499 69.295 

1.45 0.16137 29.092 69.083 
1.5 0.17609 30.563 68.943 
1.6 0.20412 33.189 68.835 
1.7 0.23045 35.459 68.889 
1.8 0.25527 37.436 69.008 
1.9 0.27875 39.166 69.205 
2 0.30103 40.690 69.380 

2.2 0.34242 43.234 69.807 
2.4 0.38021 45.258 70.211 
2.6 0.41497 46.894 70.591 
2.8 0.44716 48.232 70.938 
3 0.47712 49.340 71.247 

3.2 0.50515 50.268 71.524 
3.6 0.55630 51.719 71.947 
4 0.60206 52.787 72.300 
5 0.69897 54.482 72.863 
6 0.77815 55.433 73.219 
8 0.90309 56.402 73.573 

10 1 56.860 73.744 
100 2 57.678 74.037 

 
 
We fitted natural cubic splines to the data 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 vs. Log10𝑀𝑀1 and the data 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 vs. Log10𝑀𝑀1 from Log101 
to Log1010 to enable the web application to interpolate between the tabulated values of 𝑀𝑀1. We simply 
joined the points at Log1010 and Log10100 with a straight line, so that 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 and 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 could be 
interpolated up to 𝑀𝑀1 = 100. The curve-fits can be seen in Figures 3 and 4. 
 
Before starting a calculation, the web application uses the 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 vs. Log10𝑀𝑀1 curve-fit to check that the 
𝜆𝜆 value entered does not exceed 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 for the 𝑀𝑀1 value entered. If it does, then the application issues a 
warning message and advises the user to either reduce 𝜆𝜆 or increase 𝑀𝑀1. 
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To start the calculation, the web application uses the 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 vs. Log10𝑀𝑀1 curve-fit to set the initial guess 
for 𝛽𝛽 to the value of 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 for the 𝑀𝑀1 value entered. As the calculation proceeds, 𝛽𝛽 is reduced step-by-
step from 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 until the condition that 𝑣𝑣𝜃𝜃 is zero at the cone is satisfied (unless 𝜆𝜆 = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 at 𝑀𝑀1 is entered 
by the user, in which case 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 is the required wave angle). 
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3.3 Properties ahead of the shock 
 
The properties of the flow upstream of the shock are based on the International Standard Atmosphere 
(ISA), Ref. [3]. The ISA is a model of the change in temperature and pressure with altitude in the Earth’s 
atmosphere. The atmosphere is divided into layers over which the temperature is either constant or 
varies linearly with geopotential altitude, as shown in Figure 8. Ref. [3] defines constants and formulae 
by which the pressure and other properties of the atmosphere may be calculated from the temperature. 
The constants are set out in Table 2. 
 
 
Figure 8  Temperature of the International Standard Atmosphere 
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Table 2  Properties of the International Standard Atmosphere 

Standard values at sea level 
Temperature 𝑇𝑇 288.15 K 
Pressure 𝑝𝑝 101,325 Pa 
Density ρ 1.2250 kg m–3 
Dynamic viscosity 𝜇𝜇 1.7894 × 10–5 kg m–1 s–1 
Speed of sound 𝑎𝑎 340.29 m s–1 
Acceleration due to gravity 𝑔𝑔 9.80665 m s–2 

Other standard values 
Specific gas constant of air 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴 287.05287 J kg–1 K–1 
Ratio of specific heats γ = c𝑝𝑝/c𝑣𝑣 1.4 

 
 
The geopotential altitude ℎ is related to the geometric altitude 𝑧𝑧 by 
 

ℎ(𝑧𝑧) = �
𝑅𝑅𝐸𝐸

𝑅𝑅𝐸𝐸 + 𝑧𝑧
� 𝑧𝑧 

 
where 𝑅𝑅𝐸𝐸 is the radius of the Earth (6,356 km). By rearranging this equation, we can write the geometric 
altitude 𝑧𝑧 in terms of the geopotential altitude ℎ: 
 

𝑧𝑧(ℎ) = �
𝑅𝑅𝐸𝐸

𝑅𝑅𝐸𝐸 − ℎ
� ℎ 

 
Ref. [3] shows how the atmospheric pressure and density are calculated given the variation in 
atmospheric temperature with altitude. The calculation steps are also given in Ref. [4]. Table 3 gives 
the pressure and density at the points 0 to 7 in Figure 8. 
 
 
Table 3  Pressure and density of the International Standard Atmosphere 

Point Geopotential 
altitude ℎ [m] 

Geometric 
altitude 𝑧𝑧 [m] 

Temperature 
𝑇𝑇 [K] 

Pressure 
𝑝𝑝 [Pa] 

Density 
ρ [kg m-3] 

0 0 0 288.15 101,325 1.2250 
1 11,000 11,109 216.65 22,632 0.3639 
2 20,000 20,063 216.65 5,475 0.08804 
3 32,000 32.162 228.65 868.0 0.01322 
4 47,000 47.350 270.65 110.9 0.001427 
5 51,000 51,413 270.65 66.94 8.616 × 10-4 
6 71,000 71,802 214.65 3.956 6.421 × 10-5 
7 84,852 86,000 186.95 0.3734 6.958 × 10-6 
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The speed of sound upstream of the shock 𝑎𝑎1 is given by 
 

𝑎𝑎1 = �𝛾𝛾𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇1 
 
where the ratio of the specific heats γ = 𝐶𝐶𝑝𝑝/𝐶𝐶𝑣𝑣 is defined to be constant and equal to 1.4 and the specific 
gas constant of the air 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴 is defined to be 287.05287 J kg−1 K−1 (see Table 2). 
 
The Mach number 𝑀𝑀1 is 
 

𝑀𝑀1 =
𝑣𝑣1

𝑎𝑎1
 

 
where 𝑣𝑣1 is the air speed. 
 
The equations that relate the conditions on the two sides of an oblique shock assume that the air is 
calorically perfect. The static enthalpy ℎ1 is then equal to 𝐶𝐶𝑝𝑝 𝑇𝑇1, where the specific heat at constant 
pressure 𝐶𝐶𝑝𝑝 is constant. In the web application 𝐶𝐶𝑝𝑝 is taken to be 1.004 kJ kg−1 K−1, which is the specific 
heat at constant pressure of dry air at 15°C. 
 
If the air is assumed to be a calorically perfect gas, then the entropy of the air is given by 
 

𝑠𝑠1 − 𝑠𝑠𝑜𝑜 = 𝐶𝐶𝑝𝑝ln(𝑇𝑇1 𝑇𝑇𝑜𝑜⁄ ) − 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴ln(𝑝𝑝1 𝑝𝑝𝑜𝑜⁄ ) 
 
where (𝑝𝑝o, 𝑇𝑇𝑜𝑜, 𝑠𝑠𝑜𝑜) are conditions at some reference state. Referring to the tables of thermodynamic 
properties, Ref. [5], we have taken 𝑠𝑠𝑜𝑜 to be 6.86305 kJ kg−1 K−1 at 15°C and 1 bar pressure. 
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3.4 Properties immediately behind the shock 
 
We do not know the wave angle 𝛽𝛽 of the conical shock. We must make an initial guess at 𝛽𝛽. If we guess 
correctly then when we have solved the flow behind the shock, the velocity component 𝑣𝑣𝜃𝜃 will be zero 
when 𝜃𝜃 = 𝜆𝜆, the semi-vertex angle of the cone. If it is not, then we must adjust 𝛽𝛽 until it is. 
 
Figure 9 shows the velocity components immediately behind the shock. The shock lies along a radial 
line, so the velocity components and thermodynamic properties are constant along the shock. We can 
use equations developed for an oblique shock to calculate the velocity components and properties. 
 
 
Figure 9  Velocity components immediately behind the shock 

 
 
For the upstream Mach number 𝑀𝑀1 and the guessed value of 𝛽𝛽, we can calculate the wedge deflection 
angle 𝛼𝛼 from the oblique shock relation: 
 

tan 𝛼𝛼 = 2 cot 𝛽𝛽
𝑀𝑀1

2sin2𝛽𝛽 − 1
𝑀𝑀1

2(𝛾𝛾 + cos 2𝛽𝛽) + 2
 

 
 
 
  

𝑀𝑀1, 𝑣𝑣1 

𝜃𝜃=𝛽𝛽 

𝜃𝜃=𝜆𝜆 

Cone 
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The Mach number 𝑀𝑀2 immediately behind the shock is then given by 
 

𝑀𝑀2
2sin2(𝛽𝛽 − 𝛼𝛼) =

1 + 𝛾𝛾 − 1
2 𝑀𝑀1

2sin2𝛽𝛽

𝛾𝛾𝑀𝑀1
2sin2𝛽𝛽 − 𝛾𝛾 − 1

2
 

 
The pressure 𝑝𝑝2, density 𝜌𝜌2, temperature 𝑇𝑇2, speed of sound 𝑎𝑎2, static enthalpy ℎ2 and entropy 𝑠𝑠2 
immediately behind the shock can be calculated from 
 

𝑝𝑝2 − 𝑝𝑝1

𝑝𝑝1
=

2𝛾𝛾
𝛾𝛾 + 1

(𝑀𝑀1
2sin2𝛽𝛽 − 1) 

 
𝜌𝜌2

𝜌𝜌1
=

(𝛾𝛾 + 1)𝑀𝑀1
2sin2𝛽𝛽

(𝛾𝛾 − 1)𝑀𝑀1
2sin2𝛽𝛽 + 2

 

 
𝑇𝑇2

𝑇𝑇1
=

ℎ2

ℎ1
=

𝑎𝑎2
2

𝑎𝑎1
2 = 1 +

2(𝛾𝛾 − 1)
(𝛾𝛾 + 1)2  

𝑀𝑀1
2sin2𝛽𝛽 − 1
𝑀𝑀1

2sin2𝛽𝛽
 (𝛾𝛾𝑀𝑀1

2sin2𝛽𝛽 + 1) 

 
𝑠𝑠2 − 𝑠𝑠1

𝑅𝑅Air
= ln ��1 +

2𝛾𝛾
𝛾𝛾 + 1

(𝑀𝑀1
2sin2𝛽𝛽 − 1)�

1/(𝛾𝛾−1)

�
(𝛾𝛾 + 1)𝑀𝑀1

2sin2𝛽𝛽
(𝛾𝛾 − 1)𝑀𝑀1

2sin2𝛽𝛽 + 2
�

−𝛾𝛾/(𝛾𝛾−1)

� 

 
The flow speed 𝑣𝑣2 immediately behind the shock is given by 
 

𝑣𝑣2 = 𝑀𝑀2𝑎𝑎2 
 
The radial velocity component 𝑣𝑣𝑟𝑟,2 is 
 

𝑣𝑣𝑟𝑟,2 = 𝑣𝑣2 cos(𝛽𝛽 − 𝛼𝛼) 
 
and angular velocity component 𝑣𝑣𝜃𝜃,2 is 
 

𝑣𝑣𝜃𝜃,2 = −𝑣𝑣2 sin(𝛽𝛽 − 𝛼𝛼) 
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3.5 Velocity components between the shock and the cone 
 
The space between the shock and the cone is divided into uniform intervals 𝛿𝛿𝛿𝛿, as shown in Figure 10.  
 
 
Figure 10  Computation intervals 

 
We can define 
 

𝑣𝑣′𝑟𝑟 =
𝑣𝑣𝑟𝑟

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
 

 
and 
 

𝑣𝑣′𝜃𝜃 =
𝑣𝑣𝜃𝜃

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
 

 
where 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 is the reference velocity defined by Eq. (1.2). 
 
 
 
 
  

Cone 

𝛿𝛿𝛿𝛿 
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If we divide the Taylor-Maccoll equation (1.3) through by 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚³ we obtain 
 

𝛾𝛾 − 1
2

�1 − 𝑣𝑣′𝑟𝑟
2 − �

𝑑𝑑𝑣𝑣𝑟𝑟

𝑑𝑑𝑑𝑑
�

2

� �2𝑣𝑣′𝑟𝑟 +
𝑑𝑑𝑣𝑣′𝑟𝑟

𝑑𝑑𝑑𝑑
cot 𝜃𝜃 +

𝑑𝑑2𝑣𝑣′𝑟𝑟

𝑑𝑑𝜃𝜃2 � −
𝑑𝑑𝑣𝑣′𝑟𝑟

𝑑𝑑𝑑𝑑
�𝑣𝑣′𝑟𝑟

𝑑𝑑𝑣𝑣′𝑟𝑟

𝑑𝑑𝑑𝑑
+

𝑑𝑑𝑣𝑣′𝑟𝑟

𝑑𝑑𝑑𝑑
𝑑𝑑2𝑣𝑣′𝑟𝑟

𝑑𝑑𝜃𝜃2 � = 0 

 
Then, if we define 
 

𝑤𝑤 =
𝑑𝑑𝑣𝑣′𝑟𝑟

𝑑𝑑𝑑𝑑
      (3.1) 

 
and substitute 𝑤𝑤 into the Taylor-Maccoll equation, we obtain 
 

𝛾𝛾 − 1
2

[1 − 𝑣𝑣′𝑟𝑟
2 − 𝑦𝑦2] �2𝑣𝑣′𝑟𝑟 + 𝑦𝑦 cot 𝜃𝜃 +

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � − 𝑦𝑦2 �𝑣𝑣′𝑟𝑟 +

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � = 0 

 
We can rearrange this equation so that the gradient term 𝑑𝑑𝑤𝑤/𝑑𝑑𝑑𝑑 is on the left of the equals sign: 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑤𝑤2𝑣𝑣′𝑟𝑟 − �𝛾𝛾 − 1

2 � [1 − (𝑣𝑣′𝑟𝑟)2 − 𝑤𝑤2][2𝑣𝑣′𝑟𝑟 + 𝑤𝑤 cot 𝜃𝜃]

�𝛾𝛾 − 1
2 � [1 − (𝑣𝑣′𝑟𝑟)2 − 𝑤𝑤2] − 𝑤𝑤2

      (3.2) 

 
We can integrate this equation using a numerical method to obtain 𝑤𝑤 (= 𝑣𝑣′𝜃𝜃) and 𝑣𝑣′𝑟𝑟 on each of the 
radial lines 𝜃𝜃 = 𝛽𝛽 − 𝛿𝛿𝛿𝛿, 𝜃𝜃 = 𝛽𝛽 − 2𝛿𝛿𝛿𝛿, …, 𝜃𝜃 = 𝜆𝜆. 
 
The web application uses the classical fourth-order Runge-Kutta method to integrate Eqs. (3.1) and 
(3.2). The details of the method and a sample calculation are given in Section 4. 
 
 
 
 
  



ATKINSON SCIENCE LIMITED  THEORY GUIDE 

21 
 

3.6 Thermodynamic properties between the shock and the cone 
 
Once we have found the correct value of 𝛽𝛽 we can calculate the thermodynamic properties at the 
computation points between the shock wave and the cone using relations for isentropic flow. 
 
From Eq. (1.2) we have 
 

ℎ +
𝑣𝑣2

2
=

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
2

2
      (3.3) 

 
or 
 

𝑎𝑎2

𝛾𝛾 − 1
+

𝑣𝑣2

2
=

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
2

2
      (3.4) 

 
Multiplying both sides by 2/𝑣𝑣² gives 
 

2
𝛾𝛾 − 1

�
𝑎𝑎
𝑣𝑣

�
2

+ 1 = �
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

𝑣𝑣
�

2
 

 
or 
 

2
𝛾𝛾 − 1

�
1
𝑀𝑀

�
2

+ 1 = �
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

𝑣𝑣
�

2
 

 
and so 
 

𝑣𝑣
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

= �
2

𝛾𝛾 − 1
�

1
𝑀𝑀

�
2

+ 1�
−1/2

     (3.5) 

 
Using this equation, we can calculate 𝑀𝑀 from 𝑣𝑣. 
 
Immediately behind the shock, the total temperature 𝑇𝑇02 is given by 
 

𝐶𝐶𝑝𝑝𝑇𝑇02 = 𝐶𝐶𝑝𝑝𝑇𝑇2 +
𝑣𝑣2

2

2
 

 
The flow downstream of the shock is isentropic so we can use the following relations for isentropic 
flow to calculate the temperature, pressure and density at each computation point. 
 

𝑇𝑇02

𝑇𝑇
= 1 +

𝛾𝛾 − 1
2

𝑀𝑀2      (3.6) 
 

𝑝𝑝02

𝑝𝑝
= �

𝜌𝜌02

𝜌𝜌
�

𝛾𝛾
= �

𝑇𝑇02

𝑇𝑇
�

𝛾𝛾/(𝛾𝛾−1)

      (3.7) 
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We can use the last equation with 𝑝𝑝 = 𝑝𝑝2 and 𝜌𝜌 = 𝜌𝜌2 to calculate the total properties 𝑝𝑝02 and 𝜌𝜌02 
immediately behind the shock. The total properties remain unchanged downstream. The pressure 𝑝𝑝 and 
density 𝜌𝜌 anywhere downstream are then given by 
 

𝑝𝑝02

𝑝𝑝
= �1 +

𝛾𝛾 − 1
2

𝑀𝑀2�
𝛾𝛾/(𝛾𝛾−1)

      (3.8) 

 
and 
 

𝜌𝜌02

𝜌𝜌
= �1 +

𝛾𝛾 − 1
2

𝑀𝑀2�
1/(𝛾𝛾−1)

      (3.9) 
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3.7 Thermodynamic properties at the surface of the cone 
 
We can calculate the thermodynamic properties at the surface of the cone using the relations for 
isentropic flow given in the preceding section. 
 
We can substitute 𝑣𝑣 = 𝑣𝑣𝑟𝑟3 into (3.3), (3.4) and (3.5) to obtain the enthalpy h3, the speed of sound 𝑎𝑎3, 
and the Mach number 𝑀𝑀3 at the surface of the cone: 
 

ℎ3 +
𝑣𝑣𝑟𝑟3

2

2
=

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
2

2
 

 
𝑎𝑎3

2

𝛾𝛾 − 1
+

𝑣𝑣𝑟𝑟3
2

2
=

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
2

2
 

 
𝑣𝑣𝑟𝑟3

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
= �

2
𝛾𝛾 − 1

�
1

𝑀𝑀3
�

2
+ 1�

−1/2

 

 
The entropy 𝑠𝑠3 is simply 
 

𝑠𝑠3 = 𝑠𝑠2 
 
The temperature 𝑇𝑇3 is given by (3.6): 
 

𝑇𝑇02

𝑇𝑇3
= 1 +

𝛾𝛾 − 1
2

𝑀𝑀3
2 

 
and the pressure 𝑝𝑝3 and density 𝜌𝜌3 are given by (3.7): 
 

𝑝𝑝02

𝑝𝑝3
= �

𝜌𝜌02

𝜌𝜌3
�

𝛾𝛾
= �

𝑇𝑇02

𝑇𝑇3
�

𝛾𝛾/(𝛾𝛾−1)
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4 Runge-Kutta method 
 
The web application uses the classical fourth-order Runge-Kutta (RK4) method to solve the Taylor-
Maccoll equation. The RK4 method is a one-step method for solving first-order ordinary differential 
equations. The Taylor-Maccoll equation (1.3) is a second-order ordinary differential equation, but by 
introducing the variable 𝑤𝑤, we have reduced the equation to a system of two first-order ordinary 
differential equations, (3.1) and (3.2). A description of the application of the RK4 method to systems 
of first-order equations can be found in many mathematics text books, for example, Ref. [6]. 
 
For convenience, we will change the variable names in (3.1) and (3.2), so that 𝜃𝜃 becomes 𝑥𝑥, 𝑣𝑣′𝑟𝑟 becomes 
𝑦𝑦, and 𝑤𝑤 (= 𝑣𝑣′𝜃𝜃) becomes 𝑧𝑧. Thus, Eqs. (3.1) and (3.2) can be written: 
 

𝑦𝑦′ = 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑧𝑧      (4.1) 
 

𝑧𝑧′ = 𝑔𝑔(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) =
𝑧𝑧2𝑦𝑦 − 0.2[1 − 𝑦𝑦2 − 𝑧𝑧2][2𝑦𝑦 + 𝑧𝑧 cot 𝑥𝑥]

0.2[1 − 𝑦𝑦2 − 𝑧𝑧2] − 𝑧𝑧2       (4.2) 

 
To illustrate the application of the RK4 method we will solve Eqs. (4.1) and (4.2) for a cone with a 
semi-vertex angle 𝜆𝜆 of 30° moving at a Mach number 𝑀𝑀1 of 1.6 at a geopotential altitude of 11,000 m. 
 

4.1 Upstream conditions 
 
The temperature, pressure and density of the International Standard Atmosphere at a geopotential 
altitude of 11,000 m are given in Table 3 and are 𝑇𝑇1 = 216.65 K, 𝑝𝑝1 = 22,632 Pa, 𝜌𝜌1 = 0.3639 kg m−3, 
respectively. From Table 1, the highest wave angle possible 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 for a weak shock at 𝑀𝑀1 = 1.6 is 
68.835°. We shall use this as the starting value for 𝛽𝛽. The initial condition for 𝑥𝑥 is therefore 68.835°. 
The specific enthalpy h1 is 
 

ℎ1 = 𝐶𝐶𝑝𝑝𝑇𝑇1 = 1.004 × 216.65 = 217.5166 kJ kg−1 
 
and the specific entropy 𝑠𝑠1 is 
 

𝑠𝑠1 = 𝑠𝑠𝑜𝑜 + 𝐶𝐶𝑝𝑝ln(𝑇𝑇1 𝑇𝑇𝑜𝑜⁄ ) − 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴ln(𝑝𝑝1 𝑝𝑝𝑜𝑜⁄ ) 
 

= 6.86305 + 1.004 ln �
216.65
288.15

� − 0.28705287 ln �
22,632

100,000
�  

 
= 7.0032159 kJ kg−1 K−1 

 
The speed of sound upstream of the shock 𝑎𝑎1 is 
 

𝑎𝑎1 = �𝛾𝛾𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇1 = √1.4 × 287.05287 × 216.65 = 295.06949 m s−1 
 
and the speed of the flow 𝑣𝑣1 is 
 

𝑣𝑣1 = 𝑀𝑀1𝑎𝑎1 = 1.6 × 295.06949 = 472.11119 m s−1 
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4.2 Conditions immediately behind the shock (initial conditions) 
 
The flow conditions immediately behind the shock wave are given by the relations for an oblique shock 
in Section 3.4. 
 
The wedge deflection angle 𝛼𝛼 is given by 
 

tan 𝛼𝛼 = 2 cot 𝛽𝛽
𝑀𝑀1

2sin2𝛽𝛽 − 1
𝑀𝑀1

2(𝛾𝛾 + cos 2𝛽𝛽) + 2
 

 

= 2 cot 68.835
1.62sin268.835 − 1

1.62(1.4 + cos[2 × 68.835]) + 2
= 0.2572324 

 
so 
 

𝛼𝛼 = 14.425583° 
 
The Mach number 𝑀𝑀2 immediately behind the shock is given by 
 

𝑀𝑀2
2sin2(𝛽𝛽 − 𝛼𝛼) =

1 + 𝛾𝛾 − 1
2 𝑀𝑀1

2sin2𝛽𝛽

𝛾𝛾𝑀𝑀1
2sin2𝛽𝛽 − 𝛾𝛾 − 1

2
 

 
so 
 

𝑀𝑀2
2 =

1
sin2(68.835 − 14.425584) ×

1 + 1.4 − 1
2 1.62sin268.835

1.4 × 1.62sin268.835 − 1.4 − 1
2

= 0.7492882 

 
and 
 

𝑀𝑀2 = 0.8656143 
 
The pressure 𝑝𝑝2 immediately behind the shock is given by 
 

𝑝𝑝2 − 𝑝𝑝1

𝑝𝑝1
=

2𝛾𝛾
𝛾𝛾 + 1

(𝑀𝑀1
2sin2𝛽𝛽 − 1) =

2 × 1.4
1.4 + 1

(1.62sin268.835 − 1) = 1.4306561 

 
From Table 3, the atmospheric pressure 𝑝𝑝1 at a geopotential altitude of 11,000 m is 22,632 Pa. The 
pressure 𝑝𝑝2 is therefore 55,010.608 Pa. 
 
The density 𝜌𝜌2 immediately behind the shock is given by 
 

𝜌𝜌2

𝜌𝜌1
=

(𝛾𝛾 + 1)𝑀𝑀1
2sin2𝛽𝛽

(𝛾𝛾 − 1)𝑀𝑀1
2sin2𝛽𝛽 + 2

=
(1.4 + 1)1.62sin268.835

(1.4 − 1)1.62sin268.835 + 2
= 1.8484844 

 
From Table 3, the density of the atmosphere 𝜌𝜌1 at a geopotential altitude of 11,000 m is 0.3639 kg m−3. 
The density 𝜌𝜌2 is therefore 0.6726635 kg m−3. 
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The temperature 𝑇𝑇2, static enthalpy h2 and speed of sound 𝑎𝑎2 immediately behind the shock are given 
by 
 

𝑇𝑇2

𝑇𝑇1
=

ℎ2

ℎ1
=

𝑎𝑎2
2

𝑎𝑎1
2 = 1 +

2(𝛾𝛾 − 1)
(𝛾𝛾 + 1)2  

𝑀𝑀1
2sin2𝛽𝛽 − 1
𝑀𝑀1

2sin2𝛽𝛽
 (𝛾𝛾𝑀𝑀1

2sin2𝛽𝛽 + 1) 

 

= 1 +
2(1.4 − 1)
(1.4 + 1)2 ×

1.62sin268.835 − 1
1.62sin268.835

(1.4 × 1.62sin268.835 + 1) = 1.3149454 

 
From Table 3, the atmospheric temperature 𝑇𝑇1 at a geopotential altitude of 11,000 m is 216.65 K. The 
temperature 𝑇𝑇2 is therefore 284.88292 K. 
 
The static enthalpy h1 upstream of the shock is 217.5166 kJ kg−1, so the specific enthalpy h2 
immediately behind the shock is 286.02245 kJ kg−1. 
 
The speed of sound 𝑎𝑎1 upstream of the shock is 295.06949 m s−1, so the speed of sound 𝑎𝑎2 immediately 
behind the shock is 338.35934 m s−1. 
 
The entropy 𝑠𝑠2 immediately behind the shock is given by 
 

𝑠𝑠2 − 𝑠𝑠1

𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴
= ln ��1 +

2𝛾𝛾
𝛾𝛾 + 1

(𝑀𝑀1
2sin2𝛽𝛽 − 1)�

1/(𝛾𝛾−1)

�
(𝛾𝛾 + 1)𝑀𝑀1

2sin2𝛽𝛽
(𝛾𝛾 − 1)𝑀𝑀1

2sin2𝛽𝛽 + 2
�

−𝛾𝛾/(𝛾𝛾−1)

� 

 

= ln ��1 +
2 × 1.4
1.4 + 1

(1.62sin268.835 − 1)�
1/(1.4−1)

�
(1.4 + 1)1.62sin268.835

(1.4 − 1)1.62sin268.835 + 2
�

−1.4/(1.4−1)

� 

 
= 0.0701181 

 
The entropy 𝑠𝑠1 upstream of the shock is 7.0032159 kJ kg−1 K−1 and the specific gas constant for the 
International Standard Atmosphere 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴 is 0.28705287 kJ kg−1 K−1, so the entropy 𝑠𝑠2 immediately 
behind the shock is 7.0233435 kJ kg−1 K−1. 
 
The air speed 𝑣𝑣2 immediately behind the shock is 
 

𝑣𝑣2 = 𝑀𝑀2𝑎𝑎2 = 0.8656143 × 338.35934 = 292.88868 m s−1  
 
The radial velocity component 𝑣𝑣𝑟𝑟,2 is 
 

𝑣𝑣𝑟𝑟,2 = 𝑣𝑣2 cos(𝛽𝛽 − 𝛼𝛼) = 292.88868 cos(68.835 − 14.425583) = 170.45809 m s−1 
 
and the angular velocity component 𝑣𝑣𝜃𝜃,2 is 
 

𝑣𝑣𝜃𝜃,2 = 𝑣𝑣2 sin(𝛽𝛽 − 𝛼𝛼) = 292.88868 sin(68.835 − 14.425583) = −238.17603 m s−1 
 
The reference velocity 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 is given by Eq. (1.2), 
 

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
2

2
= ℎ2 +

𝑣𝑣2
2

2
= 286,022.45 +

292.888682

2
= 328,914.34 m2 s−2 

 
so 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 is 811.06638 m s−1. 
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The dimensionless velocity components 𝑣𝑣′𝑟𝑟 and 𝑣𝑣′𝜃𝜃 are. 
 

𝑣𝑣′𝑟𝑟 =
𝑣𝑣𝑟𝑟,2

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
=

170.45809
811.06638

= 0.2101654 

 
and 
 

𝑣𝑣′𝜃𝜃 =
𝑣𝑣𝜃𝜃,2

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
=

−238.17603
811.06638

= −0.2936579 

 

4.3 Application of the RK4 method 
 
The initial conditions for the RK4 method are 𝑥𝑥 = 1.2013974 radians (𝜃𝜃 = 68.835°), 𝑦𝑦 (= 𝑣𝑣′𝑟𝑟) = 
0.2101654 and 𝑧𝑧 (= 𝑣𝑣′𝜃𝜃) = −0.2936579. We must integrate Eqs. (4.1) and (4.2) numerically in the 
negative 𝑥𝑥 direction, and we will choose a step size ℎ of −0.01 rad (−0.5729578°). When applied to 
a system of two first-order ordinary differential equations, the RK4 method can be written as 
 

𝑦𝑦𝑖𝑖+1 = 𝑦𝑦𝑖𝑖 +
1
6

(𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4)ℎ      (4.3a) 
 

𝑧𝑧𝑖𝑖+1 = 𝑧𝑧𝑖𝑖 +
1
6

(𝑙𝑙1 + 2𝑙𝑙2 + 2𝑙𝑙3 + 𝑙𝑙4)ℎ      (4.3b) 
 
where 
 

𝑘𝑘1 = 𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖)      (4.3c) 
 

𝑙𝑙1 = 𝑔𝑔(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖)      (4.3d) 
 

𝑘𝑘2 = 𝑓𝑓(𝑥𝑥𝑖𝑖 + ½ℎ, 𝑦𝑦𝑖𝑖 + ½ℎ𝑘𝑘1, 𝑧𝑧𝑖𝑖 + ½ℎ𝑙𝑙1)      (4.3e) 
 

𝑙𝑙2 = 𝑔𝑔(𝑥𝑥𝑖𝑖 + ½ℎ, 𝑦𝑦𝑖𝑖 + ½ℎ𝑘𝑘1, 𝑧𝑧𝑖𝑖 + ½ℎ𝑙𝑙1)      (4.3f) 
 

𝑘𝑘3 = 𝑓𝑓(𝑥𝑥𝑖𝑖 + ½ℎ, 𝑦𝑦𝑖𝑖 + ½ℎ𝑘𝑘2, 𝑧𝑧𝑖𝑖 + ½ℎ𝑙𝑙2)      (4.3g) 
 

𝑙𝑙3 = 𝑔𝑔(𝑥𝑥𝑖𝑖 + ½ℎ, 𝑦𝑦𝑖𝑖 + ½ℎ𝑘𝑘2, 𝑧𝑧𝑖𝑖 + ½ℎ𝑙𝑙2)      (4.3h) 
 

𝑘𝑘4 = 𝑓𝑓(𝑥𝑥𝑖𝑖 + ℎ, 𝑦𝑦𝑖𝑖 + ℎ𝑘𝑘3, 𝑧𝑧𝑖𝑖 + ℎ𝑙𝑙3)      (4.3i) 
 

𝑙𝑙4 = 𝑔𝑔(𝑥𝑥𝑖𝑖 + ℎ, 𝑦𝑦𝑖𝑖 + ℎ𝑘𝑘3, 𝑧𝑧𝑖𝑖 + ℎ𝑙𝑙3)      (4.3j) 
 
and where 
 

𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) = 𝑧𝑧𝑖𝑖      (4.3k) 
 

𝑔𝑔(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) =
𝑧𝑧𝑖𝑖

2𝑦𝑦𝑖𝑖 − 0.2�1 − 𝑦𝑦𝑖𝑖
2 − 𝑧𝑧𝑖𝑖

2�[2𝑦𝑦𝑖𝑖 + 𝑧𝑧𝑖𝑖 cot 𝑥𝑥𝑖𝑖]
0.2�1 − 𝑦𝑦𝑖𝑖

2 − 𝑧𝑧𝑖𝑖
2� − 𝑧𝑧𝑖𝑖

2       (4.3l) 

 
 
 
 



ATKINSON SCIENCE LIMITED  THEORY GUIDE 

28 
 

Applying the initial conditions, 𝑦𝑦0 = 0.2101654 and 𝑧𝑧0 = −0.2936579 at 𝑥𝑥0 = 1.2013974, to Eqs. (4.3c) to (4.3j) gives 
 

𝑘𝑘1 = 𝑓𝑓(𝑥𝑥0, 𝑦𝑦0, 𝑧𝑧0) = 𝑧𝑧0 = −0.2936579 
 
 

𝑙𝑙1 = 𝑔𝑔(𝑥𝑥0, 𝑦𝑦0, 𝑧𝑧0) =
𝑧𝑧0

2𝑦𝑦0 − 0.2[1 − 𝑦𝑦0
2 − 𝑧𝑧0

2][2𝑦𝑦0 + 𝑧𝑧0 cot 𝑥𝑥0]
0.2[1 − 𝑦𝑦0

2 − 𝑧𝑧0
2] − 𝑧𝑧0

2  

 

=
(−0.2936579)2(0.2101654) − 0.2[1 − 0.21016542 − (−0.2936579)2][2(0.2101654) + (−0.2936579) cot 1.2013974]

0.2[1 − 0.21016542 − (−0.2936579)2] − (−0.2936579)2  

 

=
0.0181236 − 0.2 × 0.8695956 × 0.3066347

0.2 × 0.8695956 − 0.086235
= −0.4015097 

 
 

𝑥𝑥0 + ½ℎ = 1.2013974 + ½(−0.01) = 1.1963974 
 

𝑦𝑦0 + ½ℎ𝑘𝑘1 = 0.2101654 + ½(−0.01)(−0.2936579) = 0.2116337 
 

𝑧𝑧0 + ½ℎ𝑙𝑙1 = −0.2936579 + ½(−0.01)(−0.4015097) = −0.2916503 
 
 

𝑘𝑘2 = 𝑓𝑓(𝑥𝑥0 + ℎ, 𝑦𝑦0 + ½ℎ𝑘𝑘1, 𝑧𝑧0 + ½ℎ𝑙𝑙1) = (𝑧𝑧0 + ½ℎ𝑙𝑙1) = −0.2916503 
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𝑙𝑙2 = 𝑔𝑔(𝑥𝑥0 + ℎ, 𝑦𝑦0 + ½ℎ𝑘𝑘1, 𝑧𝑧0 + ½ℎ𝑙𝑙1) 
 

=
(𝑧𝑧0 + ½ℎ𝑙𝑙1)2(𝑦𝑦0 + ½ℎ𝑘𝑘1)

0.2[1 − (𝑦𝑦0 + ½ℎ𝑘𝑘1)2 − (𝑧𝑧0 + ½ℎ𝑙𝑙1)2] − (𝑧𝑧0 + ½ℎ𝑙𝑙1)2 

 

−
0.2[1 − (𝑦𝑦0 + ½ℎ𝑘𝑘1)2 − (𝑧𝑧0 + ½ℎ𝑙𝑙1)2][2(𝑦𝑦0 + ½ℎ𝑘𝑘1) + (𝑧𝑧0 + ½ℎ𝑙𝑙1) cot(𝑥𝑥0 + ½ℎ)]

0.2[1 − (𝑦𝑦0 + ½ℎ𝑘𝑘1)2 − (𝑧𝑧0 + ½ℎ𝑙𝑙1)2] − (𝑧𝑧0 + ½ℎ𝑙𝑙1)2  

 

=
(−0.2916503)2(0.2116337)

0.2[1 − (0.2116337)2 − (−0.2916503)2] − (−0.2916503)2 

 

−
0.2[1 − (0.2116337)2 − (−0.2916503)2][2(0.2116337) + (−0.2916503) cot(1.1963974)]

0.2[1 − (0.2116337)2 − (−0.2916503)2] − (−0.2916503)2  

 

=
0.0180015 − 0.2 × 0.8701513 × 0.3086685

0.0889704
= −0.4014384 

 
 

𝑦𝑦0 + ½ℎ𝑘𝑘2 = 0.2101654 + ½(−0.01)(−0.2916503) = 0.2116237 
 

𝑧𝑧0 + ½ℎ𝑙𝑙2 = −0.2936579 + ½(−0.01)(−0.4014384) = −0.2916507 
 
 

𝑘𝑘3 = 𝑓𝑓(𝑥𝑥0 + ½ℎ, 𝑦𝑦0 + ½ℎ𝑘𝑘2, 𝑧𝑧0 + ½ℎ𝑙𝑙2) = (𝑧𝑧0 + ½ℎ𝑙𝑙2) = −0.2916507 
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𝑙𝑙3 = 𝑔𝑔(𝑥𝑥0 + ½ℎ, 𝑦𝑦0 + ½ℎ𝑘𝑘2, 𝑧𝑧0 + ½ℎ𝑙𝑙2) 
 

=
(𝑧𝑧0 + ½ℎ𝑙𝑙2)2(𝑦𝑦0 + ½ℎ𝑘𝑘2)

0.2[1 − (𝑦𝑦0 + ½ℎ𝑘𝑘2)2 − (𝑧𝑧0 + ½ℎ𝑙𝑙2)2] − (𝑧𝑧0 + ½ℎ𝑙𝑙2)2 

 

−
0.2[1 − (𝑦𝑦0 + ½ℎ𝑘𝑘2)2 − (𝑧𝑧0 + ½ℎ𝑙𝑙2)2][2(𝑦𝑦0 + ½ℎ𝑘𝑘2) + (𝑧𝑧0 + ½ℎ𝑙𝑙2) cot(𝑥𝑥0 + ½ℎ)]

0.2[1 − (𝑦𝑦0 + ½ℎ𝑘𝑘2)2 − (𝑧𝑧0 + ½ℎ𝑙𝑙2)2] − (𝑧𝑧0 + ½ℎ𝑙𝑙2)2  

 

=
(−0.2916507)2(0.2116237)

0.2[1 − (0.2116237)2 − (−0.2916507)2] − (−0.2916507)2 

 

−
0.2[1 − (0.2116237)2 − (−0.2916507)2][2(0.2116237) + (−0.2916507) cot(1.1963974)]

0.2[1 − (0.2116237)2 − (−0.2916507)2] − (−0.2916507)2  

 

=
0.0180007 − 0.2 × 0.8701553 × 0.3086483

0.0889709
= −0.4014081 

 
 

𝑥𝑥0 + ℎ = 1.2013974 + (−0.01) = 1.1913974 
 

𝑦𝑦0 + ℎ𝑘𝑘3 = 0.2101654 + (−0.01)(−0.2916507) = 0.2130819 
 

𝑧𝑧0 + ℎ𝑙𝑙3 = −0.2936579 + (−0.01)(−0.4014081) = −0.2896438 
 
 

𝑘𝑘4 = 𝑓𝑓(𝑥𝑥0 + ℎ, 𝑦𝑦0 + ℎ𝑘𝑘3, 𝑧𝑧0 + ℎ𝑙𝑙3) = (𝑧𝑧0 + ℎ𝑙𝑙3) = −0.2896438 
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𝑙𝑙4 = 𝑔𝑔(𝑥𝑥0 + ℎ, 𝑦𝑦0 + ℎ𝑘𝑘3, 𝑧𝑧0 + ℎ𝑙𝑙3) 
 

=
(𝑧𝑧0 + ℎ𝑙𝑙3)2(𝑦𝑦0 + ℎ𝑘𝑘3)

0.2[1 − (𝑦𝑦0 + ℎ𝑘𝑘3)2 − (𝑧𝑧0 + ℎ𝑙𝑙3)2] − (𝑧𝑧0 + ℎ𝑙𝑙3)2 

 

−
0.2[1 − (𝑦𝑦0 + ℎ𝑘𝑘3)2 − (𝑧𝑧0 + ℎ𝑙𝑙3)2][2(𝑦𝑦0 + ℎ𝑘𝑘3) + (𝑧𝑧0 + ℎ𝑙𝑙3) cot(𝑥𝑥0 + ℎ)]

0.2[1 − (𝑦𝑦0 + ℎ𝑘𝑘3)2 − (𝑧𝑧0 + ℎ𝑙𝑙3)2] − (𝑧𝑧0 + ℎ𝑙𝑙3)2  

 

=
(−0.2896438)2(0.2130819)

0.2[1 − (0.2130819)2 − (−0.2896438)2] − (−0.2896438)2 

 

−
0.2[1 − (0.2130819)2 − (−0.2896438)2][2(0.2130819) + (−0.2896438) cot(1.1913974)]

0.2[1 − (0.2130819)2 − (−0.2896438)2] − (−0.2896438)2  

 

=
0.0178762 − 0.2 × 0.8707026 × 0.3106782

0.2 × 0.8707026 − 0.0838935
= −0.4014037 
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Substituting 𝑘𝑘1, 𝑙𝑙1, 𝑘𝑘2, 𝑙𝑙2, 𝑘𝑘3, 𝑙𝑙3, 𝑘𝑘4 and 𝑙𝑙4 into (4.3a) and (4.3b) gives 
 

𝑦𝑦1 = 𝑦𝑦0 +
1
6

[𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4]ℎ 
 

= 0.2101654 +
1
6

[−0.2936579 + 2(−0.2916503) + 2(−0.2916507) + (−0.2896438)](−0.01) 
 

= 0.2130819 
 

𝑧𝑧1 = 𝑧𝑧0 +
1
6

[𝑙𝑙1 + 2𝑙𝑙2 + 2𝑙𝑙3 + 𝑙𝑙4]ℎ 
 

= −0.2936579 +
1
6

[−0.4015097 + 2(−0.4014384) + 2(−0.4014081) + (−0.4014037)](−0.01) 
 

= −0.2896435 
 
We now have a new set of conditions, 𝑦𝑦1 = 0.2130819 and 𝑧𝑧1 = −0.2896435 at 𝑥𝑥1 = 1.1913974 rad. We simply repeat the preceding steps as many times as 
necessary until 𝑧𝑧 reaches zero or becomes positive. Table 3 shows that 𝑧𝑧 becomes positive when 𝑥𝑥 = 0.5713974 rad (𝜃𝜃 = 32.7386°), which is greater than the 
semi-vertex angle 𝜆𝜆. Consequently, we must reduce the value of 𝑥𝑥0 (the wave angle, 𝛽𝛽), recalculate the shock properties from the equations for an oblique shock, 
and repeat the RK4 calculation. 
 
To illustrate the application of the RK4 method, we chose a step size ℎ of −0.01 rad (−0.5729578°). In the web application the step size ℎ 
is −0.000087266 rad (−0.005°) and the increment in the wave angle 𝛽𝛽 is −0.00087266 rad (−0.05°). 
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Table 4  RK4 solution 

𝑖𝑖 𝑥𝑥𝑖𝑖 𝑦𝑦𝑖𝑖 𝑧𝑧𝑖𝑖 𝑖𝑖 𝑥𝑥𝑖𝑖 𝑦𝑦𝑖𝑖 𝑧𝑧𝑖𝑖 
0 1.2013974 0.2101654 −0.2936579 40 0.8013974 0.2941445 −0.1203417 
1 1.1913974 0.2130819 −0.2896435 41 0.7913974 0.2953234 −0.1154499 
2 1.1813974 0.2159827 −0.2856290 42 0.7813974 0.2964533 −0.1105198 
3 1.1713974 0.2187945 −0.2816118 43 0.7713974 0.2975337 −0.1055501 
4 1.1613974 0.2215905 −0.2775899 44 0.7613974 0.2985642 −0.1005397 
5 1.1513974 0.2243463 −0.2735614 45 0.7513974 0.2995444 −0.0954873 
6 1.1413974 0.2270617 −0.2695246 46 0.7413974 0.3004738 −0.0903914 
7 1.1313974 0.2297367 −0.2654778 47 0.7313974 0.3013520 −0.0852506 
8 1.1213974 0.2323712 −0.2614198 48 0.7213974 0.3021786 −0.0800634 
9 1.1113974 0.2349651 −0.2573491 49 0.7113974 0.3029531 −0.0748279 
10 1.1013974 0.2375181 −0.2532646 50 0.7013974 0.3036750 −0.0695425 
11 1.0913974 0.2400303 −0.2491651 51 0.6913974 0.3043438 −0.0642050 
12 1.0813974 0.2425014 −0.2450498 52 0.6813974 0.3049590 −0.0588135 
13 1.0713974 0.2449312 −0.2409175 53 0.6713974 0.3055199 −0.0533656 
14 1.0613974 0.2473197 −0.2367675 54 0.6613974 0.3060261 −0.0478589 
15 1.0513974 0.2496665 −0.2325988 55 0.6513974 0.3064769 −0.0422906 
16 1.0413974 0.2519716 −0.2284107 56 0.6413974 0.3068717 −0.0366580 
17 1.0313974 0.2542347 −0.2242025 57 0.6313974 0.3072098 −0.0309580 
18 1.0213974 0.2564556 −0.2199733 58 0.6213974 0.3074906 −0.0251870 
19 1.0113974 0.2586341 −0.2157226 59 0.6113974 0.3077133 −0.0193414 
20 1.0013974 0.2607700 −0.2114497 60 0.6013974 0.3078772 −0.0134173 
21 0.9913974 0.2628630 −0.2071538 61 0.5913974 0.3079814 −0.0074101 
22 0.9813974 0.2649130 −0.2028345 62 0.5813974 0.3080251 −0.0013152 
23 0.9713974 0.2669196 −0.1984910 63 0.5713974 0.3080074 0.0048727 
24 0.9613974 0.2688827 −0.1941227     
25 0.9513974 0.2708020 −0.1897291     
26 0.9413974 0.2726772 −0.1853095     
27 0.9313974 0.2745081 −0.1808634     
28 0.9213974 0.2762944 −0.1763900     
29 0.9113974 0.2780358 −0.1718889     
30 0.9013974 0.2797320 −0.1673592     
31 0.8913974 0.2813829 −0.1628005     
32 0.8813974 0.2829880 −0.1582120     
33 0.8713974 0.2845470 −0.1535929     
34 0.8613974 0.2860597 −0.1489427     
35 0.8513974 0.2875260 −0.1442606     
36 0.8413974 0.2889448 −0.1395457     
37 0.8313974 0.2903166 −0.1347973     
38 0.8213974 0.2916406 −0.1300144     
39 0.8113974 0.2929167 −0.1251962     
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Figure 11 shows the output from the web application for the upstream conditions used to illustrate the 
RK4 method (geopotential altitude of 11,000 m, upstream Mach number 𝑀𝑀1 of 1.6, and cone 
semi-vertex angle 𝜆𝜆 of 30°). The calculated wave angle 𝛽𝛽 is 58.2849°, and this value agrees with the 
plot of wave angle 𝛽𝛽 against semi-vertex angle 𝜆𝜆 for different upstream Mach numbers 𝑀𝑀1 in Figure 2. 
The shock wave gives rise to an increase in temperature, pressure and density, and the flow at the surface 
of the cone is subsonic. 
 
 
Figure 11  Output from the web application 
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